skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Moreno, Jorge"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Integral field units have extended our knowledge of galactic properties to kiloparsec (or, sometimes, even smaller) patches of galaxies. These scales are where the physics driving galaxy evolution (feedback, chemical enrichment, etc.) take place. Quantifying the spatially resolved properties of galaxies, both observationally and theoretically, is therefore critical to our understanding of galaxy evolution. To this end, we investigate spatially resolved scaling relations within galaxies ofM > 109.0atz= 0 in IllustrisTNG. We examine both the resolved star formation main sequence (rSFMS) and the resolved mass–metallicity relation (rMZR) using 1 kpc × 1 kpc maps. We find that the rSFMS in IllustrisTNG is well described by a power law but is significantly shallower than the observed rSFMS. However, the disagreement between the rSFMS of IllustrisTNG and observations is likely driven by an overestimation of AGN feedback in IllustrisTNG for the higher-mass hosts. Conversely, the rMZR for IllustrisTNG has very good agreement with observations. Furthermore, we argue that the rSFMS is an indirect result of the Schmidt–Kennicutt law and local gas relation, which are both independent of host galaxy properties. Finally, we expand upon a localized leaky-box model to study the evolution of idealized spaxels and find that it provides a good description of these resolved relations. The degree of agreement, however, between idealized spaxels and simulated spaxels depends on the “net” outflow rate for the spaxel, and the IllustrisTNG scaling relations indicate a preference for a low net outflow rate. 
    more » « less
    Free, publicly-accessible full text available October 23, 2026
  2. ABSTRACT Decapod crustaceans regulate molting through steroid molting hormones (ecdysteroids) synthesized by the molting gland (Y-organ, YO). Molt-inhibiting hormone (MIH), a neuropeptide synthesized and secreted by the eyestalk ganglia, negatively regulates YO ecdysteroidogenesis. MIH signaling is mediated by cyclic nucleotide second messengers. cGMP-dependent protein kinase (PKG) is the presumed effector of MIH signaling by inhibiting mechanistic Target of Rapamycin Complex 1 (mTORC1)-dependent ecdysteroidogenesis. Phylogenetic analysis of PKG contiguous sequences in CrusTome, as well as 35 additional species in NCBI RefSeq, identified 206 PKG1 sequences in 108 species and 59 PKG2 sequences in 53 species. These included four PKG1α splice variants in the N-terminal region that were unique to decapods, as well as PKG1β and PKG2 homologs. In vitro assays using YOs from the blackback land crab (Gecarcinus lateralis) and green shore crab (Carcinus maenas) determined the effects of MIH±PKG inhibitors on ecdysteroid secretion. A general PKG inhibitor, Rp-8-Br-PET-cGMPS, countered the effects of MIH, as ecdysteroid secretion increased in PKG-inhibited YOs compared with C. maenas YOs incubated with MIH alone. By contrast, a PKG2-specific inhibitor, AP-C5 {4-(4-[1H-imidazol-1-yl]phenyl)-N-2-propyn-1-yl-2-pyrimidinamine}, enhanced the effects of MIH, as ecdysteroid secretion decreased in G. lateralis and C. maenas YOs incubated with AP-C5 and MIH compared with YOs incubated with MIH alone. These data suggest that both PKG1 and PKG2 are activated by MIH, but have opposing effects on mTORC1-dependent ecdysteroidogenesis. A model is proposed in which the dominant role of PKG1 is countered by PKG2, resulting in low ecdysteroid production by the basal YO during intermolt. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  3. Abstract We utilize the cosmological volume simulation FIREbox to investigate how a galaxy’s environment influences its size and dark matter content. Our study focuses on approximately 1200 galaxies (886 central and 332 satellite halos) in the low-mass regime, with stellar masses between 106and 109M. We analyze the size–mass relation (r50–M), the inner dark matter mass–stellar mass ( M DM 50 –M) relation, and the halo mass–stellar mass (Mhalo–M) relation. At fixed stellar mass, we find that galaxies experiencing stronger tidal influences, indicated by higher Perturbation Indices (PI > 1) are generally larger and have lower halo masses relative to their counterparts with lower Perturbation Indices (PI < 1). Applying a Random Forest regression model, we show that both the environment (PI) and halo mass (Mhalo) are significant predictors of a galaxy’s relative size and dark matter content. Notably, becauseMhalois also strongly affected by the environment, our findings indicate that environmental conditions not only influence galactic sizes and relative inner dark matter content directly, but also indirectly, through their impact on halo mass. Our results highlight a critical interplay between environmental factors and halo mass in shaping galaxy properties, affirming the environment as a fundamental driver in galaxy formation and evolution. 
    more » « less
    Free, publicly-accessible full text available April 10, 2026
  4. Abstract Simulations and observations suggest that galaxy interactions may enhance the star formation rate (SFR) in merging galaxies. One proposed mechanism is the torque exerted on the gas and stars in the larger galaxy by the smaller galaxy. We analyze the interaction torques and star formation activity on six galaxies from the FIRE-2 simulation suite with masses comparable to the Milky Way galaxy at redshiftz= 0. We trace the halos fromz= 3.6 toz= 0, calculating the torque exerted by the nearby galaxies on the gas in the central galaxy. We calculate the correlation between the torque and the SFR across the simulations for various mass ratios. For near-equal-stellar-mass-ratio interactions in the galaxy sample, occurring betweenz= 1.2−3.6, there is a positive and statistically significant correlation between the torque from nearby galaxies on the gas of the central galaxies and the SFR. For all other samples, no statistically significant correlation is found between the torque and the SFR. Our analysis shows that some, but not all, major interactions cause starbursts in the simulated Milky Way-mass galaxies, and that most starbursts are not caused by galaxy interactions. The transition from “bursty” at high redshift (z≳ 1) to “steady” star formation state at later times is independent of the interaction history of the galaxies, and most of the interactions do not leave significant imprints on the overall trend of the star formation history of the galaxies. 
    more » « less
  5. Abstract Feedback from supermassive black holes is believed to be a critical driver of the observed color bimodality of galaxies above the Milky Way mass scale. Active galactic nuclei (AGN) feedback has been modeled in many galaxy formation simulations, but most implementations have involved simplified prescriptions or a coarse-grained interstellar medium (ISM). We present the first set of Feedback In Realistic Environments (FIRE)-3 cosmological zoom-in simulations with AGN feedback evolved toz∼ 0, examining the impact of AGN feedback on a set of galaxies with halos in the mass range 1012–1013M. These simulations combine detailed stellar and ISM physics with multichannel AGN feedback including radiative feedback, mechanical outflows, and, in some simulations, cosmic rays (CRs). We find that massive (>L*) galaxies in these simulations can match local scaling relations including the stellar mass–halo mass relation and theMBH–σrelation; in the stronger model with CRs, they also match the size–mass relation and the Faber–Jackson relation. Many of the massive galaxies in the simulations with AGN feedback have quenched star formation and elliptical morphologies, in qualitative agreement with observations. In contrast, simulations at the massive end without AGN feedback produce galaxies that are too massive and form stars too rapidly, are order-of-magnitude too compact, and have velocity dispersions well above Faber–Jackson. Despite these successes, the AGN models analyzed do not produce uniformly realistic galaxies when the feedback parameters are held constant: While the stronger model produces the most realistic massive galaxies, it tends to overquench the lower-mass galaxies. This indicates that further refinements of the AGN modeling are needed. 
    more » « less
  6. Receptor tyrosine kinases (RTKs) mediate the actions of growth factors in metazoans. In decapod crustaceans, RTKs are implicated in various physiological processes, such molting and growth, limb regeneration, reproduction and sexual differentiation, and innate immunity. RTKs are organized into two main types: insulin receptors (InsRs) and growth factor receptors, which include epidermal growth factor receptor (EGFR), fibroblast growth factor receptor (FGFR), vascular endothelial growth factor receptor (VEGFR), and platelet-derived growth factor receptor (PDGFR). The identities of crustacean RTK genes are incomplete. A phylogenetic analysis of the CrusTome transcriptome database, which included all major crustacean taxa, showed that RTK sequences segregated into receptor clades representing InsR (72 sequences), EGFR (228 sequences), FGFR (129 sequences), and PDGFR/VEGFR (PVR; 235 sequences). These four receptor families were distinguished by the domain organization of the extracellular N-terminal region and motif sequences in the protein kinase catalytic domain in the C-terminus or the ligand-binding domain in the N-terminus. EGFR1 formed a single monophyletic group, while the other RTK sequences were divided into subclades, designated InsR1-3, FGFR1-3, and PVR1-2. In decapods, isoforms within the RTK subclades were common. InsRs were characterized by leucine-rich repeat, furin-like cysteine-rich, and fibronectin type 3 domains in the N-terminus. EGFRs had leucine-rich repeat, furin-like cysteine-rich, and growth factor IV domains. N-terminal regions of FGFR1 had one to three immunoglobulin-like domains, whereas FGFR2 had a cadherin tandem repeat domain. PVRs had between two and five immunoglobulin-like domains. A classification nomenclature of the four RTK classes, based on phylogenetic analysis and multiple sequence alignments, is proposed. 
    more » « less
  7. ABSTRACT The observationally inferred size versus stellar–mass relationship (SMR) for low-mass galaxies provides an important test for galaxy formation models. However, the relationship relies on assumptions that relate observed luminosity profiles to underlying stellar mass profiles. Here we use the Feedback in Realistic Environments simulations of low-mass galaxies to explore how the predicted SMR changes depending on whether one uses star-particle counts directly or mock observations. We reproduce the SMR found in The Exploration of Local Volume Satellites survey remarkably well only when we infer stellar masses and sizes using mock observations. However, when we use star particles to directly infer stellar masses and half-mass radii, we find that our galaxies are too large and obey an SMR with too little scatter compared to observations. This discrepancy between the ‘true’ galaxy size and mass and those derived in the mock observation approach is twofold. First, our simulated galaxies have higher and more varied mass-to-light ratios (MLR) at a fixed colour than those commonly adopted, which tends to underestimate their stellar masses compared to their true, simulated values. Second, our galaxies have radially increasing MLR gradients therefore using a single MLR tends to underpredict the mass in the outer regions. Similarly, the true half-mass radius is larger than the half-light radius because the light is more concentrated than the mass. If our simulations are accurate representations of the real Universe, then the relationship between galaxy size and stellar mass is even tighter for low-mass galaxies than is commonly inferred from observed relations. 
    more » « less
  8. ABSTRACT Recent observations with JWST have uncovered unexpectedly high cosmic star formation activity in the early Universe, mere hundreds of millions of years after the big bang. These observations are often understood to reflect an evolutionary shift in star formation efficiency (SFE) caused by changing galactic conditions during these early epochs. We present FIREbox$$^{\it HR}$$, a high-resolution, cosmological hydrodynamical simulation from the Feedback in Realistic Environments (FIRE) project, which offers insights into the SFE of galaxies during the first billion years of cosmic time. FIREbox$$^{\it HR}$$ re-simulates the cosmic volume ($L=22.1$ cMpc) of the original FIREbox run with eight times higher mass resolution ($$m_{\rm b}\sim {}7800\, M_\odot$$), but with identical physics, down to $$z\sim {}6$$. FIREbox$$^{\it HR}$$ predicts ultraviolet (UV) luminosity functions in good agreement with available observational data. The simulation also successfully reproduces the observed cosmic UV luminosity density at $$z\sim {}6{\!-\!}14$$, demonstrating that relatively high star formation activity in the early Universe is a natural outcome of the baryonic processes encoded in the FIRE-2 model. According to FIREbox$$^{\it HR}$$, the SFE–halo mass relation for intermediate mass haloes ($$M_{\rm halo}\sim {}10^9{\!-\!}10^{11}\, {\rm M}_\odot$$) does not significantly evolve with redshift and is only weakly mass-dependent. These properties of the SFE–halo mass relation lead to a larger contribution from lower mass haloes at higher z, driving the gradual evolution of the observed cosmic UV luminosity density. A theoretical model based on the SFE–halo mass relation inferred from FIREbox$$^{\it HR}$$ allows us to explore implications for galaxy evolution. Future observations of UV faint galaxies at $$z\gt 12$$ will provide an opportunity to further test these predictions and deepen our understanding of star formation during Cosmic Dawn. 
    more » « less
  9. Vrecl, M. (Ed.)
    Ecdysteroid molting hormone synthesis is directed by a pair of molting glands or Y-organs (YOs), and this synthesis is inhibited by molt-inhibiting hormone (MIH). MIH is a member of the crustacean hyperglycemic hormone (CHH) neuropeptide superfamily, which includes CHH and insect ion transport peptide (ITP). It is hypothesized that the MIH receptor is a Class A (Rhodopsin-like) G protein-coupled receptor (GPCR). The YO of the blackback land crab,Gecarcinus lateralis, expresses 49 Class A GPCRs, three of which (Gl-CHHR-A9, -A10, and -A12) were provisionally assigned as CHH-like receptors. CrusTome, a transcriptome database assembled from 189 crustaceans and 12 ecdysozoan outgroups, was used to deorphanize candidate MIH/CHH GPCRs, relying on sequence homology to three functionally characterized ITP receptors (BNGR-A2, BNGR-A24, and BNGR-A34) in the silk moth,Bombyx mori. Phylogenetic analysis and multiple sequence alignments across major taxonomic groups revealed extensive expansion and diversification of crustacean A2, A24, and A34 receptors, designatedCHHFamilyReceptorCandidates (CFRCs). The A2 clade was divided into three subclades; A24 clade was divided into five subclades; and A34 was divided into six subclades. The subclades were distinguished by conserved motifs in extracellular loop (ECL) 2 and ECL3 in the ligand-binding region. Eleven of the 14 subclades occurred in decapod crustaceans. InG. lateralis, seven CFRC sequences, designated Gl-CFRC-A2α1, -A24α, -A24β1, -A24β2, -A34α2, -A34β1, and -A34β2, were identified; the three A34 sequences corresponded to Gl-GPCR-A12, -A9, and A10, respectively. ECL2 in all the CFRC sequences had a two-stranded β-sheet structure similar to human Class A GPCRs, whereas the ECL2 of decapod CFRC-A34β1/β2 had an additional two-stranded β-sheet. We hypothesize that this second β-sheet on ECL2 plays a role in MIH/CHH binding and activation, which will be investigated further with functional assays. 
    more » « less
  10. ABSTRACT Understanding the evolution of satellite galaxies of the Milky Way (MW) and M31 requires modelling their orbital histories across cosmic time. Many works that model satellite orbits incorrectly assume or approximate that the host halo gravitational potential is fixed in time and is spherically symmetric or axisymmetric. We rigorously benchmark the accuracy of such models against the FIRE-2 cosmological baryonic simulations of MW/M31-mass haloes. When a typical surviving satellite fell in ($$3.4\!-\!9.7\, \rm {Gyr}$$ ago), the host halo mass and radius were typically 26–86 per cent of their values today, respectively. Most of this mass growth of the host occurred at small distances, $$r\lesssim 50\, \rm {kpc}$$, opposite to dark matter only simulations, which experience almost no growth at small radii. We fit a near-exact axisymmetric gravitational potential to each host at z = 0 and backward integrate the orbits of satellites in this static potential, comparing against the true orbit histories in the simulations. Orbital energy and angular momentum are not well conserved throughout an orbital history, varying by 25 per cent from their current values already $$1.6\!-\!4.7\, \rm {Gyr}$$ ago. Most orbital properties are minimally biased, ≲10 per cent, when averaged across the satellite population as a whole. However, for a single satellite, the uncertainties are large: recent orbital properties, like the most recent pericentre distance, typically are ≈20 per cent uncertain, while earlier events, like the minimum pericentre or the infall time, are ≈40–80 per cent uncertain. Furthermore, these biases and uncertainties are lower limits, given that we use near-exact host mass profiles at z = 0. 
    more » « less